

27. September 2023

Welche Rolle sollen variable Netzentgelte als Anreizinstrument für Flexibilität spielen?

Stiftung Umweltenergierecht - Fachgespräch § 14a EnWG

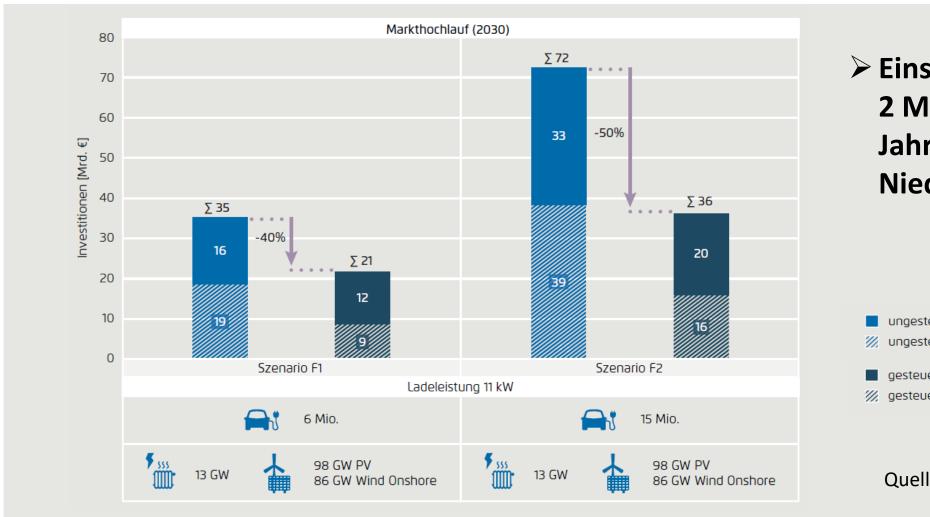
Andreas Jahn
Senior Associate
Regulatory Assistance Project (RAP)®

Anna-Louisa-Karsch-Str.2 D 10178 Berlin Germany +49 172-1769727 ajahn@raponline.org raponline.org

1 Status Quo

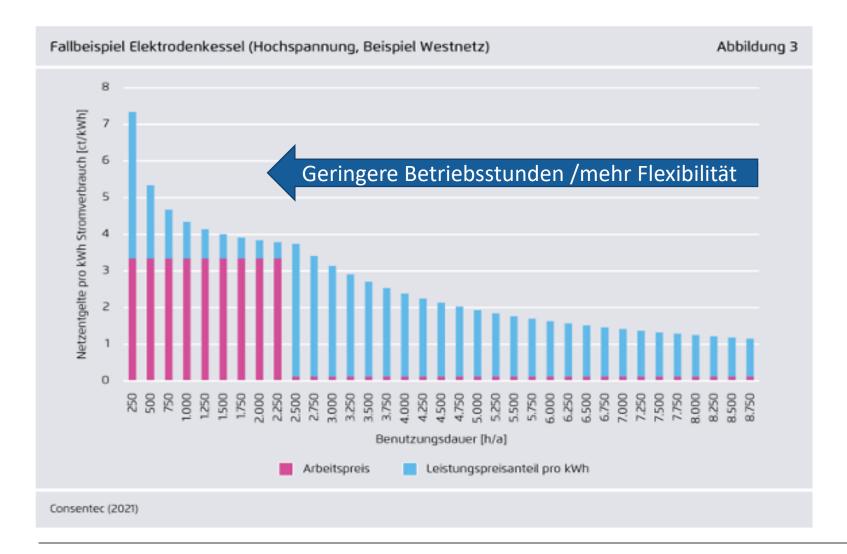
Von der Kostenverteilung zur Kostenoptimierung

- Netzentgelte sind <u>bisher</u> ein Verteilungsschlüssel von bestehenden Netzkosten
- Über statistische Gleichzeitigkeiten werden Jahresarbeits- und Jahresleistungspreise gebildet
- Last-Flexibilität wird zur Eigenverbrauchsmaximierung oder zur Vergleichmäßigung des Verbrauchs eingesetzt (Leistungspreisoptimierung), insbesondere §19(2) StromNEV


3

Gesteuertes Laden reduziert die Investitionen in die Verteilnetze um bis zu 50 Prozent

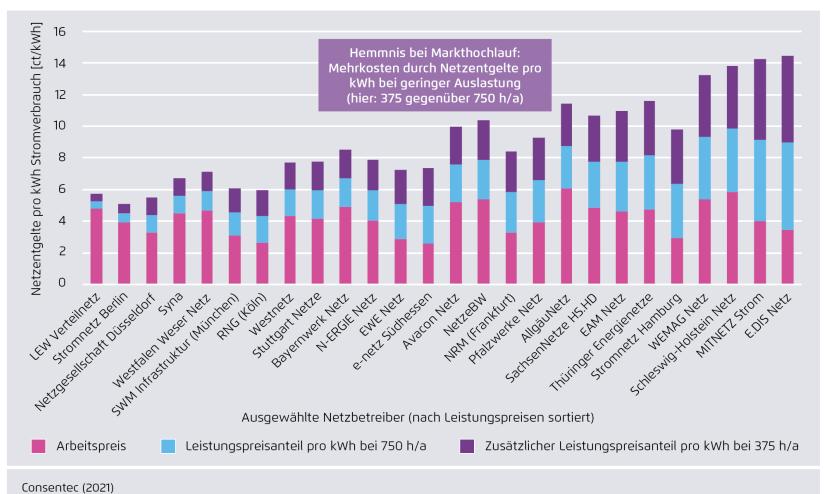
Einsparung von2 Mrd. Euro proJahr, alleine in derNiederspannung


- ungesteuert (Mittelspannung)
- ungesteuert (Niederspannung)
- gesteuert (Mittelspannung)
- gesteuert (Niederspannung)

Quelle: Agora Verkehrswende

Jahresleistungspreise hemmen Last-Flexibilität

Leistung 20 MW; Jahresentgelt bis zu 2,0 Mio. €/a; Leistungspreis unter 2.500 h/a: 0,2 Mio. €/a; über 2.500 h/a: 1,8 Mio. €/a.


(Regelung §19(2) StromNEV nicht berücksichtigt)

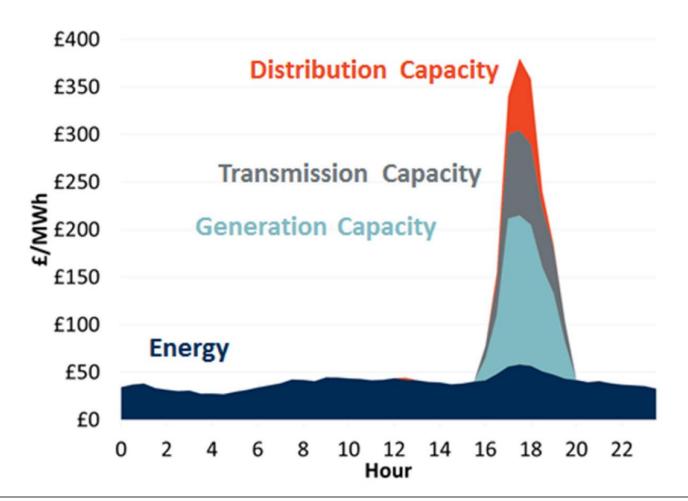
Quelle: Agora Energiewende

Jahresleistungspreise hemmen Elektrifizierung Bspw. Kosten für Schnelllader (MS)

Umschichtung von
Leistungs- zu
Arbeitspreisen
wäre für diese
Verbraucher
vorteilhaft, auch
wenn sie nicht von
zeitvariablen
Arbeitspreisen
profitieren können

Quelle: Agora Energiewende

2 Wohin soll es gehen



Von der Kostenverteilung zur Kostenoptimierung

- Relative Netzkosten geringer, wenn Ausbau vermieden wird, d.h. wenn mehr kWh über gleiche Leitung verteilt werden
- Erzeugungskosten geringer, wenn Last in Zeiträume mit günstiger Erzeugung verlagert wird
- Lastverlagerung in Zeiträume mit langfristig ausreichender Netzkapazität & günstigem Sonnen- bzw. Windstrom
- > Jahresarbeits- und Jahresleistungspreise sind kaum geeignet

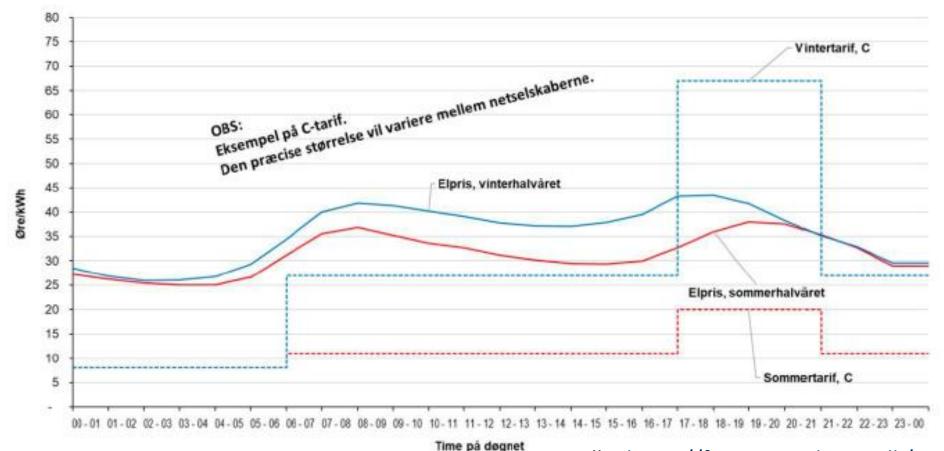
8

England - Grenzkosten im Trendszenario (Winter)

Quelle: Citizens advice/Brattle, 2017

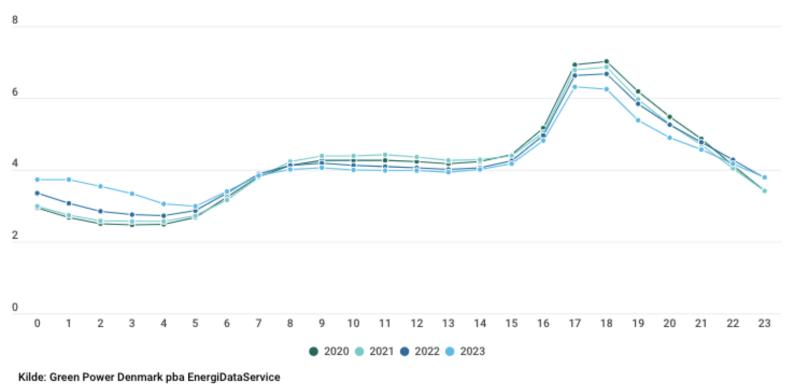
9

Regulatory Assistance Project (RAP)®


Dänemark - Skalierungsfaktoren (ggü. Standard) nach Verbrauchergruppen und Zeitfenstern

		Tariff scaling factors										
Lasperiode	B-low	B-high	A-low	A-high								
Low load	1/3	1/3	1/3	1/2								
High load	1	1	1	1								
Peak load	2	2	2	2								

Quelle: https://forsyningstilsynet.dk/media/10813/bilag-1.pdf


Regulatory Assistance Project (RAP)®

Dänemark – Haushalte mit 3 täglichen und 2 Jahreszeitlichen Netzentgelten

Quelle: https://forsyningstilsynet.dk/media/10813/bilag-1.pdf

Dänemark - Stromverbrauch in den ersten 3 Monaten 2020-2023 für Einfamilien- und Reihenhäuser ohne Elektroheizung

➤ 10% des Verbrauchs wurden in 3 Jahren aus der adressierten Spitzenlastzeit verlagert.


Note: I denne figur er alle dage anvendt. Tidszonen er DK. "0" angiver "00-01". Kogespidsen fra kl. 17-21 ses i grafen fra 17-21.

Source: Green Power Denmark

South Australia (SA) Power Networks

Quelle: SA Power Networks

SA – Bestimmung der langfristigen Grenzkosten (Netzausbau) als Basis für zeitliche Netzpreise

System level	ΔMW	Δ cost	ST	HV bus	HV net	LV bus	LV net	Alloc.	\$/kW/	pf	\$/kVA/
								cost	year		year
ST	3.6	2.6	0.1					0.1	\$ 15	0.95	\$ 14.6
HV bus	3.5	4.2	0.1	0.1				0.1	\$ 40	0.90	\$ 37.4
HV net	8.8	2.3	0.1	0.2	0.1			0.5	\$ 56	0.90	\$ 50.7
LV bus	40.4	2.0	0.6	1.1	0.6	0.5		2.8	\$ 69	0.90	\$ 62.4
LV net	109.0	-	1.7	2.8	1.6	1.4	0.0	7.6	\$ 69	0.90	\$ 62.4
Totals	165.4	11.1	2.6	4.2	2.3	1.9	0.0	11.1			

Tariff Class	LRMC, \$/kVA per annum	\$/kW
Major business – Sub-transmission	\$ 14.6	
Major business – Zone Substation	\$ 37.4	
Large HV business	\$ 50.7	
Large LV business	\$ 62.4	
Small business	\$ 62.4	
LV residential	\$ 62.4	\$69.3

Quelle: SA Power Networks

SA – Potential der Netz-Kostenvermeidung nach Verbrauchergruppen => zeitliche Netzentgelte

Tariff Class	Stand-alone cost \$m	Tariff Revenue \$m	Avoidable cost \$m
Major business	75	10	5
HV business	89	31	5
Large LV business	254	176	44
Small business	301	140	61
LV residential	652	402	244
Total		759	

Tariff class	Meter	Energy/demand	Weekday/workday	Ozen	Tim.	2200	3am	dam	E.	eam	net.	B2m	and game	30am	Illam	12pm	1pm	2pm	Jam.	-	Spin	epen	-7pm	Bpm	mq8	10pm	11pm	32380
Residential																												
Anytime use	Type 6	Energy	All days	Anyt	me use						4																	
Time of use	Type 4	Energy	All days	Peak Off			Penk Off peak (1-6am)				Peak (6-10am)			So	lar spo	nge (10	(10am - 3pm)		Pe	ak (3pr	n - 1an	1)	277	-				
Prosumer	Type 4	Energy	All days	Peak Off peak (1-6am)		Per	ak (6-10	Dam)	m) Solar sponge (10am - 3pm)					Peak (3pm - 1am)														
		Peak Demand	November to March – 4 hour intervals		П														П	П	Pe	eak den	and (5	9pm)				П
Controlled load	Type 5, 6	Energy	All days	Anytime use controlled by the clock (typically 11pm - 7am with solar sponge 10am - 3pm available)																								
	Type 4	Energy	All days	Off p	eak (11:	30pm -	6:30am)			Peak (6:30-9:	30am)	Solar	ponge	(9:30ar	n - 3:30	opm)		Peak ((3:30-1	1:30pm						

Quelle: SA Power Networks

DK & SA - Einbindung Verbraucher:innen

Abstecken der Prioritäten

- Konsultation
- Abwägung
- Zählerverfügbarkeit
- PV, Batterien, EV
- Vorausschau

Regulatory Assistance Project (RAP)®

Quelle: SA Power Networks

3 Abwägungen und Notwendigkeiten

1. Optimierung langfristiger Netzlast über (Entgelt-) Anreize funktioniert - Ausgestaltungsfragen offen.

- Mehr zeitvar. Arbeitspreise, weniger Jahres-Leistungspreise
- Wahl-/ Wechseloption für zeitvar. Arbeitspreise-Only-Netzentgelte?

- Bestimmung des richtigen Spreads, des Vorlaufs, der Zeiträume und der Netzgebiete oder -regionen
- Monitoring/Forschung der "§14a Modul 3" Entgelte
- Diskussion: wenn zeitvar. Netzentgelte kostenreflektierend sind, müsste die Anwendung Pflicht sein (keine Wahloption)

18

2. Optimierung der kurzfristigen Netzlast über Preise – sobald...

- Strommarktdesign definiert (lokale Anreize),
- Netzentkostenverteilung (Netz-Eigentum, Kundengruppen) geklärt,
- zeitliche Entgelte etabliert (Datenformate, Abrechnung) und
- Wirkung (Verbraucher, Märkte) erforscht sind,
- kann die kurzfristige Netzoptimierung (dynamische Entgelte) im Zusammenhang mit dynamischen Stromgestehungskosten adressiert werden.

Regulatory Assistance Project (RAP)®

About RAP

Als eine unabhängige, globale Organisation unterstützt das Regulatory Assistance Project (RAP)[®] Regierungen und Behörden bei der Dekarbonisierung des Stromsystems.

Erfahren Sie Näheres auf unserer Website: raponline.org